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Abstract – In this paper, we propose an image denoising threshold method that exploits the subband dependency of the 
wavelet coefficients to estimate the signal variance using the local neighboring coefficients. The VisuShrink, 
SureShrink, and BayesShrink denoising methods are important methods for denoising, but these methods remove too 
many coefficients, leading to poor image quality. The proposed method retains the modified coefficients significantly 
that result good visual quality.  The experimental results show that our method outperforms the VisuShrink, SureShrink, 
and BayesShrink denoising methods. 
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1. Introduction  
 

A digital image is more often degraded by noise 
during its acquisition and/or transmission. It is 
necessary to remove noise from the image to main its 
visual quality and it can be done by applying a 
suitable denoising method. The aim of an image 
denoising algorithm is to recover the clean image 
from its noisy version by removing the noise and 
retaining the maximum possible image information. 
In the recent years, there has been a fair amount of 
research on thresholding and threshold selection 
procedures for image denoising [9-13]. The threshold 
selection plays an important role in image denoising 
because the large value of the threshold kills the 
image data, while the small value of threshold keeps 
the noisy data [1].  The VisuShrink [1-2], SureShrink 
[3-4], and BayesShrink [5-6] methods are the most 
commonly used threshold selection methods. The 
VisuShrink threshold is a function of noise variance 
and the number of samples [1-2]. The SureShrink 
threshold is considered to be optimal in terms of the 
Stein’s Unbiased Risk Estimator (SURE) [3-4]. This 
threshold is determined in BayesShrink through 
modeling the coefficients as Gaussian distribution 
function [5]. These denoising methods have been 
improved by our proposed method that follows term-
by-term threshold estimation. The rest of the paper is 
organized as follows. Section 2 gives the overview of 
the related work. Section 3 describes the proposed 
denoising method. Experimental results are given in 
section 4 that is followed by the conclusion in section 
5. 
 
2. Related Work 
 

     There are many threshold selection methods such as 
VisuShrink, SureShrink, and BayesShrink.  The very first  
 
 
time, Donoho and Johnstone gave a mechanism to find 
the threshold value which is known as VisuShrink [1-2]. 
The VisuShrink threshold is evaluated by the following 
expression:       

                TVisu = σ Mlog2
                                       

(1)  

  
     where M is the number of pixels in the image and σ is 
the noise variance that is defined as: 
 
             σ2 = [(median| y(i, j) |) /0.6745]2                        (2) 
 
      here y(i, j)  HH1 subband coefficients that are 
obtained by applying the wavelet transform to the image. 
    The VisuShrink has been found to yield an overly 
smoothed image since the estimate is derived under the 
constraint with high probability. The SureShrink was 
proposed by Donoho and Johnstone in which the above 
problem was overcome using the combination of both the 
Universal and SureShrink thresholds [3-4]. The 
SureShrink threshold, TSure, is defined as:  
     

             TSure = min (tJ, σ Mlog2 )
                            

(3)  

 
     where tJ represents the threshold value at Jth 
decomposition level in wavelet domain.  
    One of the most popular methods namely, BayesShrink 
was proposed by Chang et al. in which the threshold was 
derived from Bayesian method [5-6]. This method has 
better performance than the SureShrink in terms of mean 
square error (MSE). The BayesShrink threshold for every 
subband is given as follows: 



Mantosh Biswas, et al., ACSA, Vol. 2, No. 3, pp. 377-381, 2013 378 

 

 

             TBayes =
y


ˆ

2
                                                        (4)      

where y̂ is the noise free signal variance. 

 
3. Proposed Denoising Method 
 
     A noisy image with additive noise is modeled by: 
 
             y(i, j) = x(i, j) + n(i, j)        0≤ i, j ≤ M – 1        (5) 
 
   where y(i, j), x(i, j), and n(i, j) denote the observed 
noisy image, the unknown original image, and an 
independent identically distributed (i.i.d) random white 
Gaussian noise with zero mean and finite variance σ2, 
respectively. Our goal is to recover x(i, j) from the noisy 
observation y(i, j).  
    The wavelet coefficients of the noisy image after 
applying a wavelet transform on (5), are given by: 
 
             Y(i, j)= X (i, j) + N (i, j)                                    (6)  
 
      where Y(i, j), X(i, j), and N(i, j) are the wavelet 
transform coefficients of y(i, j), x(i, j), and n(i, j), 
respectively [7-8]. 
 
3.1. Parameters 
 
    VisuShrink, SureShrink and BayesShrink denoising 
methods sometimes blur and loose some details due to 
their thresholds since the constructed wavelet coefficients 
are smaller than their threshold values. Finding optimized 
value of thresholding is a major problem. A small 
threshold surpasses all the noisy coefficients and the 
resultant i.e. the denoised signal is still noisy, while a 
large threshold value makes more number of coefficients 
as zero which leads to smooth signal and destroys the 
details that may cause blurs and artifacts. So, we try to 
find out suitable threshold function by analyzing the 
parameters of the wavelet coefficients in each subband in 
order to have an optimal value. 
    We describe steps to shrink the noisy coefficients using 
soft thresholding. We compute the new threshold that 
takes the noisy coefficients in each subband, adaptive 
parameter, and noise variance of the noisy coefficients 
into account. We define a new threshold TNEW as follows:   
 

            TNEW = (1- lt

jiy

e

),(2



)                                             (7) 
 

      where the adaptive parameter lt is defined for each 

subband at each decomposition level l as follows:  
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      where, 
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n
nR , is called as the noise reduction 

factor; n is any positive integer i.e. n > 0 and 1≤ l ≤ J; J 

represents the number of decomposition levels and M̂ = 
M/2l.  
    The choice of n is not dependent on the scale, subband, 
noise, and image; it has also been observed that we have 
good quality of the image i.e. high PSNR for the higher 
values of n in case of high noise level on the average 
since the value of new threshold function given in (7) 
increases for all values of n and hence the method 
performs significantly better for higher noise value.   

Another parameter sV  is defining by  

             sV  = max   0, 
M

jiy
M

ji

ˆ

),(
1

0,



 - σ                             (9) 

 
where, y(i, j) details subband coefficients in HHl, HLl, 
and LHl. 
    Now, we shrink the noisy coefficients using soft-
thresholding method as follows: 
 

),(ˆ jix =  sign(Y(i, j)) ( Y(i, j)- TNEW),  |Y(i, j)| > TNEW   

                   0,                                            |Y(i, j)| ≤ TNEW  
           
                                                                                      (10) 
 
                              1      for x>0    
here, sign(x) =     -1      for x<0 
                              0      for x=0                                    (11) 
 
 
3.2. Image Denoising Algorithm Structure 
 
    This section discusses the image denoising algorithm 
which achieves near optimal threshold in the wavelet 
domain for recovering the original image from the noisy 
one. This algorithm is quite simple to implement.   
    Following are the steps performed in this method. 
i.   Perform multiscale decomposition on the image  
     corrupted by Gaussian noise using 2-D wavelet  
     transform. 
ii.  Estimate the noise variance σ2 (i.e., robust median  
     estimator) using (2). 
iii. For each subband (except the low pass residual) 
     a) Compute the new threshold TNEW using (7). 
     b) Apply soft-thresholding using (10) to the noisy   
         coefficients in order to get the noiseless 
coefficients. 
iv. Finally, apply the inverse wavelet transform to the  
     modified coefficients to get the   denoised estimate  

      image x̂ . 

 
 
 
 

   
 
 
 
    
 

               (a)                                 (b)                                 (c) 
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                       (d)                                     (e) 
Fig. 1. Original test images: (a) Lena (b) Mandrill (c) 
Barbara (d) Goldhill and (e) Cameramen with the size 
512×512 
 
4. Experimental Results 
 
    In order to analyze the performance of our proposed 
denoising method, we take four original test images: 
Lena, Mandrill, Barbara, Goldhill, and Cameramen, each 
of size 512×512 pixels (refer Fig. 1). The discrete 
wavelet transformation (DWT) used is Symlet least 
asymmetric compactly supported wavelet with eight 
vanishing moments up to four decomposition levels [7-8, 
14-15]. These images are contaminated with Gaussian 
noise with noise levels: 10, 20, 30, 50, 75, and 100. Our 
results are measured in terms of PSNR (dB). The 
denoised image is said to be very much closer to the 
original image when the PSNR is higher. We have taken 
the four different values of n (=1, 2, 3, and 5) in our 
experiments. We have compared the experimental results 
of the proposed method with that of the SureShrink, 
VisuShrink, and BayesShrink methods. 
 
 
 
 
 
 
 
 
  
        (a)                                   (b)                                   (c) 
 
 
 
 
 
  
 
 
        (d)                                    (e)                                   (f) 
 
                                        

 
 
 
 
 
 
 

       (g)                                    (h)                                   (i) 
 
 Fig. 2. (a) Original images, (b) Noisy image with noise 
level 30, (c) Denoising using VisuShrink, (d) Denoising 
using SureShrink, (e) Denoising using BayesShrink, (f) 

Denoising using proposed method for n=1, (g) Denoising 
using proposed method for n=2, (h) Denoising using 
proposed method for n=3, (i) Denoising using proposed 
method for n=5 of Goldhill 
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Fig. 3. PSNR vs. Noise level of VisuShrink, SureShrink, 
BayesShrink, and proposed methods with n=1, 2, 3, and 5 
(for Goldhill) 
 

The computed PSNR values are given in Table 1 
for four denoising methods: SureShrink, VisuShrink, 
BayesShrink, and proposed method. It is evident from 
the results given in Table 1 that our proposed method 
outperforms remarkably over the VisuShrink, 
SureShrink, and BayesShrink for all test images. In 
other words, our method removes the noise 
praiseworthy. We have applied proposed method, 
VisuShrink, SureShrink, and BayesShrink methods to 
the Goldhill for the noise level 30. The resultant 
denoised images are shown in Figs. 2(c)-(i)). It is 
evident from Figs. 2(c)-(i) that our proposed 
technique produces much brighter and smoother 
denoised images than the VisuShrink, SureShrink, 
and BayesShrink. We have also shown that the PSNR 
values graphically for the four mentioned methods in 
Fig. 3. As it is evident from this graph, the PSNR 
gain of our proposed method is better than the 
VisuShrink, SureShrink, and BayesShrink taking n as 
1, 2, 3, and 5 in our experiments. We have compared 
the experimental results of the proposed method with 
the SureShrink, VisuShrink, and BayesShrink 
methods. Similar results were obtained for other test 
images also. Because of repetitive nature, graphs for 
other images have been omitted. 
 
5. Conclusions 

 
    In this paper, we have developed an image denoising 
threshold estimation method which is completely data-
driven and utilizes the information about subband 
coefficients. This method succeeds in removing a large 
amount of additive noise and also preserves most of the 
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edges and visual quality of the image. Our proposed 
method gives better performance than the VisuShrink, 
SureShrink, and BayesShrink. 
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